
of the field: For K 0 = 0, Eq. (3.9) splits off from the system (3.2), (3.6)-(3.8); T(x~ y, 
z) and e ~(x, y, z) are determined from the given functions v0(z) and b0(z). 

The above-proposed scheme is based on rejection of the terms G i in the system (1.8)- 
(1.12). The solution can be subsequently refined either by a successive-approximation pro- 
cedure or by obtaining a Riccati equation for G i ~ 0. 
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ELECTRIC FIELD BUILDUP IN PORE COLLAPSE 

V. V. Surkov UDC 534.222.2 

The rapid deformation and fracture of solids gives rise to strong electric fields with 
a resultant emission of particles, x-rays, and radio-frequency radiation from the fracture 
surface. The field is generated by the production and separation of point defects and 
charged dislocations on the shock front [i] and at the tips of growing cracks [2, 3]~ In 
this paper we examine the electric effects arising near cavities and pores which collapse 
in a shock wave. 

Consider a porous dielectric medium. When the material undergoes impact compression, 
the highest deformation rates occur in the plastic zones localized around cavities and in- 
homogeneous inclusions [4]. These zones are production sites of point defects and electri- 
cally charged dislocations. The defect multiplication rate is proportional to the shear de- 
formation rate dy/dt. At low concentrations the recombination of point defects can be ne- 
glected [i]. In the case of two defect types with opposite charges, the equation of conti- 
nuity (i = i, 2) has the form 

ani M ~ F '  ~ 0-~ + div ji = d? ]i = niv - -  6 grad nivi + q-~- E. ( 1 )  

H e r e  M i s  t h e  m u l t i p l i c a t i o n  c o n s t a n t ;  n i a n d  q i  a r e  t h e  p o i n t - d e f e c t  c o n c e n t r a t i o n  a n d  
c h a r g e ,  o r  t h e  n u m b e r  o f  d i s l o c a t i o n s  p e r  u n i t  a r e a  a n d  t h e  c h a r g e  p e r  u n i t  d i s l o c a t i o n  
l e n g t h ;  t h e  d e f e c t  c u r r e n t  d e n s i t y  ] i  h a s  t h r e e  c o m p o n e n t s ,  i n v o l v i n g  t h e  l a t t i c e  v e l o c i t y  
o f  m o t i o n  v ,  t h e  d e f e c t  d i s p l a c e m e n t  r e l a t i v e  t o  t h e  l a t t i c e  ( d i f f u s i o n ) ,  a n d  t h e  d r i f t  i n  
t h e  f i e l d  o f  s t r e n g t h  E ; v i i s  t h e  d i s p l a c e m e n t  f r e q u e n c y  o f  a d e f e c t  o v e r  o n e  i n t e r a t o m i c  
distance 5(5v i is the dislocation velocity); o i is the ionic conductivity. 

For rapidly varying loads, Ji = n vi at first approximation. Leaving the defect type 
unspecified, we substitute this in (i). Assuming the material surrounding the pores is in- 
compressible, i.e., div v = 0, we obtain n i ~ n = n o + My in Lagrangian coordinates (n o is 
the initial defect concentration). 

In the following approximation we seek small corrections m i << n. Setting in (i) n i = 
n + mi, we get 

am i 
0---s + div  miv - -  52Anvi + t div ~iE = 0, 

q~ (2) 
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where o i is a function of n. Multiplying (2) by ql = e for i = i and by q2 = -e for i = 2 
and summing the results, we obtain the equation of continuity for the current. Adding one 

of Maxwell's equations, we arrive at the system 

Op/Ot + d i v  J = 0. J = 9v - -  e52grad  n ( v l - - v 2 ) + ( a  I + %)E,  ( 3 )  

e% div  E = 9, 9 = e (mt - -m~) .  

Here J is the current density due to both conduction and nonelectric forces, p is the elec- 
tric charge density, and E is the permittivity of the medium. The expression for J shows 
that the charge separation is due to the difference in the ~i values, which denote the de- 
fect "mobility" in the shock wave. 

The above approximations can be evaluated by taking into account that in the neighbor- 
hood of a pore of radius a ,  X - v ia  and E - p a / ( e e o ) .  The second and third terms in the 
expression for ji i are therefore smaller than the first when y >> d2v/a~ and u >> m/(nx) (x ~ 
~E0/o is the relaxation time by conduction). If the impact duration T << ~, the second in- 
equality is always satisfied, and the first one yields X >> 0.i sec -l for a = 1 mm, d = 3. 
10 -7 n~n, and v << i013 sec -I. 

Consider a shock front much wider than the pore size and spacing. The movement of ma- 
terial and the charge distribution in the neighborhood of a spherical pore can then be as- 
sumed spherically symmetric. In that case we have from Eqs. (3) 

OEr vr O O~ ~ Er 
at + - ~  ~ (r~E~) + Or n (v 2 - -  vl) + T = 0, (4) 

(r is the distance from the pore center, and E r and v r are the radial components of the vec- 
tors E and v). If we introduce the flux ~ = 4~r2Er of E and transform to the Langran- 

gian coordinates r0 and t, Eq. (4) becomes 

0--7 + ~  +a~ n(v 2 - v l ) = 0 ,  a o=$ff-, r = r ( % , t ) .  ( 5 )  

The boundary conditions at the pore surface, at r 0 = a 0, are 

Jr = --O~/Ot, ~ = e%E~ (r o = a o + ) .  ( 6 )  

A surface charge density ~ is assumed at the pore boundary. Furthermore, by syn~netry, E r = 
0 within the pore. Using the equation for Jr in Lagrangian coordinates to transform (6), we 

obtain the condition 

# Er OE r %=%+ 
cz -~; n ( ~ 2 - - ' ~ 0  + -c at ' 

which agrees with Eq. (5). 

The solution of (5) with zero initial conditions is given by 

t 
o 

* ( % , t ) = % J  e(t'-O/Xr 2 0 n ( v  1 - , 2 )  dt', r =  r(r o,t'). 
0 

( 7 )  

In the case of an incompressible material, we have 

r3_,0=3 a3_ v = (d-  3)/r3 (8) 

[ a = e (t) is the instantaneous pore radius]. 

The frequencies v i depend on the stress and temperature distributions near the pores. 
At pressures of -i GPa, at which cavities collapse in the shock wave, little heating occurs 
[4]~ The stresses vary exponentially in the plastic zone around the pores. The difference 
~i - u2 thus varies slowly with r and is primarily determined by the pressure amplitude in 
the shock wave. Using the expression for n in this approximation, we obtain from Eqs. (7) 

and (8) (no = O) 
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t 

(I) (r0, t) = 3or (~1 -- v2) ~ e(t'-t)/"~ (a 3 -- a~) dt' 
o ( r a + a 3  a~)2/~ , a = a( t ' ) .  (9) 

Most media are highly ductile in plastic flow, and as a result the pore radius decreas- 
es on the shock front smoothly, without oscillation [4]. The function a ~ = a3(t) can be 
approximated as 

a 3=a~+(a~-a~)e  -~/T ( t ~ O )  ( 1 0 )  

(T is the characteristic loading time, and a, is the final pore radius). The values of T 
and a, depend on the pressure amplitude in the shock wave. 

Let us substitute (i0) in (9). When t << T the exponential in (9) is close to unity. 
Calculating the integral for this case, we get 

Er(r, t) = 9a(v 1 - -  v2)MT~(r, a)/r 2, 

, = r o _  r (a]--a~)[+ln (ro--b)2(r~+rb+b2) ( 1 1 )  
- b) + + b + 

t (  2 r + b  2r~ b 3 = r S - - a  3 a~, 
+ ~ a rc tg  ]/~------~ -- arctg  - ~ - ]  , + 

where a is given by (i0) and r 0 by (8). If t >> T, most of the integral in (9) accumulates 
at the upper limit. In that case 

e~ (r, t) = 3~ (v~ - -  v2) M T ( a ~ - -  a~)(t - -  e-~/~)k4. ( 1 2 )  

The  same  f o l l o w s  f r o m  ( 3 )  i f  we s e t  J = 0 a n d  v = 0 f o r  l a r g e  t i m e s .  

The  l i n e a r  f u n c t i o n  n ( y )  f o r  p o i n t  d e f e c t s  i s  r e s t r i c t e d  b y  t h e  c o n d i t i o n  n < n ,  - 
1 0 2 s - 1 0 2 9  m -~ ( n ,  i s  t h e  l a t t i c e  a t o m  c o n c e n t r a t i o n ) .  T h u s ,  E q s .  ( 1 1 )  a n d  ( 1 2 )  h o l d  f o r  
r = a i f  a>ao=ag(M/n,)l/3NO.lao (M = 102s  m - S ) .  F o r  f u r t h e r  p o r e  c o m p r e s s i o n  we c a n  p u t  
n = n ,  a n d  s e t  a = a c i n  t h e  f u n c t i o n  ~ .  A f t e r  e x p a n d i n g  ~ i n  t h e  r a n g e  a 0 ~ a  11-"~a,, we o b -  
t a i n  

Z~ (a, t) = 3 ( t 5  + V 3 )  ~ (v2 - -  v,) aor:~/~,~/V(4a b. ( 13 ) 

We take as a lower limit for ionic crystals v 2 - v I - 1 sec -l (normal conditions). 
Then, given T = 1 msec, we get from (13) E r - l0 s V/m for a - 0.5 ~m. The field E r at the 
pore surface is plotted against the pore radius with these parameters and a,, = 0.I ~m 
in Fig. i. The electric field does not actually build up as a § 0 because of defect recom- 
bination and dielectric breakdown (in ionic crystals Ebr ~ l0 s V/m). 

The impact compression of porous solids at low pressures (-i GPa) thus produces elec- 
tric charge separation near cavities. Pore collapse intensifies the field and may cause 
electric breakdowns localized near the pores. In real solids the cavities are asymmetric, 
and therefore efficient electromagnetic radiators. Nonsymmetric pore compression in a shock 
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wave produces electric polarization along the wave normal. This effect may account for the 
appearance of quasi-static electric fields in the near (nonwave) zone. 
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CAVITATION DYNAMICS IN REFLECTION OF A COMPRESSION 

PULSE FROM THE INTERFACE OF TWO MEDIA 

G. I. Kanel' and A. V. Utkin UDC 532.593:532.533 

This paper is concerned with the reflection of a flat compression pulse, propagating 
in a condensed medium, from the surface of separation with a barrier, whose dynamic rigid- 
ity is low. This situation occurs in experiments on recording separation in low-strength 
substances - glycerol [i] or rubber [2]. In this case, as a result of interference of the 
incident and reflected rarefaction waves negative pressures are generated at some distance 
from the interface in the medium under study; these pressure gives rise to the appearance 
and growth of cavities - cavitation. The processes illustrated in Figs. i and 2, which show 
diagrams of the time t versus Langrangian coordinate h and the pressure p versus the mass 
velocity u of the material. The aim of this work is to determine the motion of the boundar- 
ies of the cavitation zone and the manifestation of this motion on the profile of the veloc- 
ity of the contact boundary. 

We study, in the acoustic approximation, cavitation in a medium whose tensile strength 
is equal to zero. We denote by ii = p01cl and i 2 = p02c2 the dynamic rigidities of the ma- 
terial of interest and the barrier, respectively (p and c are the density and velocity of 
sound in the material). The incident compression pulse propagates along C+ characteristics. 
After the shock wave emerges on the contact surface the reflected rarefaction wave, moving 
along C_ characteristics, appears. The state of the particles of the material must satisfy 
conditions on both C+ and C_ characteristics. 

Let the distribution of the velocity in the incident compression pulse have the form 

u = Uo - -  k ( c ~ t - - h q - H ) ,  u = 0 f o r  h ' c l t ~ H  - -  u o / k .  

Here u0 is the maximum value of the mass velocity and the coefficient k = const. Cavitation 
starts at t = �9 in the section h = 0 (Fig. i), where as a result of the interaction of the 
rarefaction waves the pressure first drops to zero. The left-hand boundary of the cavita- 
tion region is transported by the C_ characteristic passing through this point (the line AB). 
After the reflected rarefaction wave encounters the end of the compression pulse at the 
point t = u0/2kcl, h = H - u0/2k the propagation of the cavitation zone to the left stops. 
From the conditions of compatibility of the States on the C+ and C_ characteristics (Fig. 
2) it follows that the pressure p = 0 is reached at the time �9 = H/c I = (u0/kcl)/((i2)/(il + 

i2)). 
The change in the velocity and pressure on the contact boundary before information 

about the start of cavitation reaches it is described by the equations 
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